Abstract
Oligodendrocytes elaborate an extensive network of multibranched processes and flat membranous sheets. Microtubules (MT) participate in the elaboration and stabilization of myelin-forming processes and are essential for cellular sorting processes. Microtubule-associated proteins (MAPs) are involved in the regulation and stabilization of the dynamic MT network. It has been shown previously that oligodendrocytes express the MAP tau, a phosphoprotein most abundant in neurons of the CNS. In this article, we demonstrate for the first time that oligodendrocytes contain all six tau isoforms, and that tau mRNA and protein expression is developmentally regulated. Immunoblot analysis reveals that tau protein is more abundant, and mature isoforms are more prominent at later stages of development. During the first week of culture maturation, a marked decrease in phosphorylation is observable. Using an RT-PCR approach, we can show that oligodendrocytes express small amounts of exon 3 containing isoforms and that during culture maturation, tau mRNA splice products with 3 MT-binding domains (3R) decrease and mRNA with 4 MT-binding domains (4R) increase. In situ hybridization study demonstrates that tau mRNA is present in precursor cells and in mature oligodendrocytes. Tau mRNA is actively transported into the cellular processes, is specifically present in the primary and some of the secondary processes, enriched at the turning and branching points and the growing tips, and often appears as small patches. Hence, localized tau translation at specific sites in the cellular extensions might contribute to the regulation of MT stability during process formation, early axonal contact establishment, and myelination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.