Abstract

BackgroundThe choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system. The tight junctions linking adjacent cells of the choroidal epithelium create a physical barrier to paracellular movement of molecules. Multispecific efflux transporters as well as drug-metabolizing and antioxidant enzymes functioning in these cells contribute to a metabolic barrier. These barrier properties reflect a neuroprotective function of the choroid plexus. The choroid plexuses develop early during embryogenesis and provide pivotal control of the internal environment throughout development when the brain is especially vulnerable to toxic insults. Perinatal injuries like hypoxia and trauma, and exposure to drugs or toxic xenobiotics can have serious consequences on neurogenesis and long-term development. The present study describes the developmental expression pattern of genes involved in the neuroprotective functions of the blood–CSF barrier.MethodsThe transcriptome of rat lateral ventricular choroid plexuses isolated from fifteen-day-old embryos, nineteen-day old fetuses, two-day old pups, and adults was analyzed by a combination of Affymetrix microarrays, Illumina RNA-Sequencing, and quantitative RT-PCR.ResultsGenes coding for proteins involved in junction formation are expressed early during development. Overall perinatal expression levels of genes involved in drug metabolism and antioxidant mechanisms are similar to, or higher than levels measured in adults. A similar developmental pattern was observed for multispecific efflux transporter genes of the Abc and Slc superfamilies. Expression of all these genes was more variable in choroid plexus from fifteen-day-old embryos. A large panel of transcription factors involved in the xenobiotic- or cell stress-mediated induction of detoxifying enzymes and transporters is also expressed throughout development.ConclusionsThis transcriptomic analysis suggests relatively well–established neuroprotective mechanisms at the blood-CSF barrier throughout development of the rat. The expression of many transcription factors early in development raises the possibility of additional protection for the vulnerable developing brain, should the fetus or newborn be exposed to drugs or other xenobiotics.

Highlights

  • The choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system

  • Combined analysis of gene expression data by Affymetrix microarray, Illumina RNA-sequencing, and quantitative realtime PCR (qRT-PCR) The expression level of selected genes was assessed in E19, P2, and adult rat lateral ventricular choroid plexus using Affymetrix microarrays, and in E15 and adult lateral ventricular choroid plexus by Illumina RNA-Seq analysis

  • Individual developmental profiles were built from the Log2 FCad mean values calculated at each stage

Read more

Summary

Introduction

The choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system. Multispecific efflux transporters as well as drug-metabolizing and antioxidant enzymes functioning in these cells contribute to a metabolic barrier. These barrier properties reflect a neuroprotective function of the choroid plexus. Choroid plexuses form the main interface between the blood and cerebrospinal fluid (CSF) and participate in the control of brain homeostasis. Selective influx transport and secretion mechanisms confer on the choroidal epithelium an important role in supply of nutrient and bioactive molecules to the developing brain [3,4]. The choroid plexuses produce and secrete most of the CSF through the combined activity of various enzymes, transporters and ion channels located in the epithelial cells [5]. The rate of CSF secretion increases around birth in most mammals [6,7]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.