Abstract

Shotgun proteomics, using amine-reactive isobaric tags (iTRAQ), was used to quantify protein changes in milk fat globule membranes (MFGM) that were isolated from d 1 colostrum and compared with MFGM from d 7 milk. Eight Holstein cows were randomly assigned to 2 groups of 4 cow sample pools for a simple replication of this proteomic analysis using iTRAQ. The iTRAQ labeled peptides from the experiment sample pools were fractionated by strong cation exchange chromatography followed by further fractionation on a microcapillary high performance liquid chromatograph connected to a nanospray-tandem mass spectrometer. Data analysis identified 138 bovine proteins in the MFGM with 26 proteins upregulated and 19 proteins downregulated in d 7 MFGM compared with colostrum MFGM. Mucin 1 and 15 were upregulated greater than 7-fold in MFGM from d 7 milk compared with colostrum MFGM. The tripartite complex of proteins of adipophilin, butyrophilin, and xanthine dehydrogenase were individually upregulated in d 7 MFGM 3.4-, 3.2-, and 2.6-fold, respectively, compared with colostrum MFGM. Additional proteins associated with various aspects of lipid transport synthesis and secretion such as acyl-CoA synthetase, lanosterol synthase, lysophosphatidic acid acyltransferase, and fatty acid binding protein were upregulated 2.6- to 5.1-fold in d 7 MFGM compared with colostrum MFGM. In contrast, apolipoproteins A1, C-III, E, and A-IV were downregulated 2.6- to 4.3-fold in d 7 MFGM compared with colostrum MFGM. These data demonstrate that quantitative shotgun proteomics has great potential to provide new insights into mammary development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call