Abstract

Carotid bodies mediate hypoxia sensing for the respiratory system and increase their sensitivity in the post-natal period. The present study examined the characteristics and developmental change of fast Na(+) currents of chemoreceptor afferent neurons. Rat carotid bodies (P2-P19) were harvested intact with the petrosal ganglia and whole-cell recordings obtained from petrosal somas whose axons projected to the carotid body. The magnitude of Na(+) current increased in the post-natal period in parallel with increased conduction velocity and somal size. Voltage-dependence of activation significantly shifted towards negative potentials but no significant change occurred in the voltage dependence of inactivation or the slope factors for activation or inactivation. The leftward shift in activation increased slowly or non-inactivating currents around resting potential which increases afferent neuron excitability, a result confirmed in current clamp recordings. These results suggest that a developmental shift in Na(+) current activation plays a role in chemoreceptor maturation by enhancing excitability of the afferent neuron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.