Abstract

Fibronectins from human adult plasma, fetal plasma and from amniotic fluid obtained during early and late gestation were compared with respect to (i) their reactivity with lectins, (ii) their binding to the physiological ligands gelatin and heparin, and (iii) the role of the carbohydrate residues in the binding to these two ligands. The two fibronectin isoforms displayed distinct developmental differences in both glycosylation and binding properties: (i) Proportions of tri/tetraantennary complex glycans compared to the fraction of biantennary structures, as inferred from the reactivity with concanavalin A, were highest in amniotic fluid fibronectin from late pregnancy, lower in amniotic fluid fibronectin from early gestation, and even lower in fetal and adult plasma fibronectins. Likewise, fucose (alpha 1-6) linked to the innermost N-acetylglucosamine of the chitobiosyl core, defined by reactivity with Lens culinaris agglutinin (LCA), was present primarily in amniotic fluid fibronectin, and decreased in content during gestation from the 2nd. to the 3rd. trimenon. Both fetal and adult plasma fibronectins were only weakly reactive with LCA, indicating a low content of (alpha 1-6) linked fucose residues. After prior treatment with sialidase, both plasma and amniotic fluid fibronectins strongly reacted with erythrocyte phytohaemagglutinin (E-PHA), indicating that both fibronectin isoforms contain bisecting (beta 1-4) N-acetylglucosamine residues. Amniotic fluid fibronectins showed much greater reactivity than adult and fetal plasma fibronectins with wheat germ agglutinin; binding of this lectin to amnion fluid fibronectins was not decreased by desialylation indicating the presence of poly(N-acetyllactosamine) units. Whereas amniotic fluid fibronectins were strongly reactive with peanut agglutinin, neither adult nor fetal plasma fibronectins did bind to this lectin unless after prior desialylation. Hence, both fibronectin isoforms contain O-glycan residues that are fully sialylated in fetal and adult plasma fibronectins, but only partly sialylated in amniotic fluid fibronectins. According to these differences, glycosylation of plasma and amniotic fluid fibronectins is under developmental regulation. (ii) Amniotic fluid fibronectins had a significantly lower binding activity for both heparin and gelatin than plasma fibronectins. Moreover, amnion fibronectin from late gestation displayed a significantly lower binding to these two ligands than amnion fibronectin from early gestation. Fetal plasma fibronectins had a lower binding activity for gelatin than adult plasma fibronectin. (iii) Treatment of fibronectins with sialidase, fucosidase and removal of N-glycans with endoglycosidases H and F did not affect binding to gelatin and heparin, indicating that the interaction of plasma and amnion fibronectin with these two ligands is not influenced by their oligosaccharide moieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call