Abstract
Connexin36 (Cx36) is the major gap junction forming protein in the brain and the retina; thus, alterations in its expression indicate changes in the corresponding circuitry. Many structural changes occur in the early postnatal retina before functional neuronal circuits are finalized, including those that incorporate gap junctions. To reveal the time-lapse formation of inner retinal gap junctions, we examine the developing postnatal rat retina from birth (P0) to young adult age (P20) and follow the expression of Cx36 in the mRNA and protein levels. We found a continuous elevation in the expression of both the Cx36 transcript and protein between P0 and P20 and a somewhat delayed Cx36 plaque formation throughout the inner plexiform layer (IPL) starting at P10. By using tristratificated calretinin positive (CaR(+)) fibers in the IPL as a guide, we detected a clear preference of Cx36 plaques for the ON sublamina from the earliest time of detection. This distributional preference became more pronounced at P15 and P20 due to the emergence and widespread expression of large (>0.1 μm(2)) Cx36 plaques in the ON sublamina. Finally, we showed that parvalbumin-positive (PV(+)) AII amacrine cell dendrites colocalize with Cx36 plaques as early as P10 in strata 3 and 4, whereas colocalizations in stratum 5 became characteristic only around P20. We conclude that Cx36 expression in the rat IPL displays a characteristic succession of changes during retinogenesis reflecting the formation of the underlying electrical synaptic circuitry. In particular, AII cell gap junctions, first formed with ON cone bipolar cells and later with other AII amacrine cells, accounted for the observed Cx36 expressional changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.