Abstract

In animals and human adults, upper airway muscle activity usually precedes inspiratory diaphragm activity. We examined the interaction of the posterior cricoarytenoid muscle (PCA), which abducts the larynx, and the diaphragm (DIA) in the control of airflow in newborn infants to assess the effect of maturation on respiratory muscle sequence. We recorded tidal volume, airflow, and DIA and PCA electromyograms (EMG) in 12 full-term, 14 premature, and 10 premature infants with apnea treated with aminophylline. In most breaths, onset of PCA EMG activity preceded onset of DIA EMG activity (lead breaths). In all subjects, we also observed breaths (range 6-61%) in which PCA EMG onset followed DIA EMG onset (lag breaths). DIA neural inspiratory duration and the neuromechanical delay between DIA EMG onset and inspiratory flow were longer in lag than in lead breaths (P < 0.05 and P < 0.01, respectively). The frequency of lag breaths was greater in the premature infants [33 +/- 4% (SE)] than in either the full-term infants (21 +/- 3%, P < 0.03) or the premature infants with apnea treated with aminophylline (16 +/- 2%, P < 0.01). We conclude that the expected sequence of onset of PCA and DIA EMG activity is frequently disrupted in newborn infants. Both maturation and respiratory stimulation with aminophylline improve the coordination of the PCA and DIA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call