Abstract

The net level of cyclic AMP-stimulated protein phosphorylation was investigated in cytosolic and membrane fractions from chicken forebrain between embryonic day 13 (E13) and 52 days post-hatching. Throughout this period the majority of the net level of cAMP-stimulated phosphorylation of endogenous proteins was in the cytosolic fractions. Between day −8 (E13) and adult, the net level of CAMP-stimulated phosphorylation of endogenous proteins in the cytosol (S3) and crude synaptic plasma membrane (P2-M) fractions fell by 3 and 4 fold, respectively, when expressed per mg protein and rose by 5 and 10 fold, respectively, when expressed per fraction. The changes in specific activity were completed by 6–15 days post-hatching. The occluded cytosol (P2-S) fraction showed little change in the net level of cAMP-stimulated phosphorylation of endogenous proteins per mg protein. Major changes in phosphoprotein patterns involving both decreases and increases in phosphorylation occurred in all fractions from day −8 (E13) to day 6 post-hatch; thereafter the phosphoprotein bands and their relative intensities were unchanged. Three bands (P90 in S3; P41 and P31 in P2-M) contained major cAMP-stimulated phosphoproteins in embryonic brain but were absent after hatching. When cAMP-stimulated phosphorylation activity was measured in S3 and P-2M using an exogenous peptide substrate (Kemptide) there was no change in kinase activity per mg protein between day −8 (E13) and 30 days post-hatch. This suggests that the decrease in the net level of cAMP stimulated phosphorylation of endogenous proteins was due to the decrease in levels of endogenous phosphoproteins rather than protein kinase activity. These changes in cAMP-stimulated phosphoproteins during development correlated with the period of synapse formation in chicken forebrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.