Abstract

To understand changes in motor behavior during development, kinematic measurements were made of the right leg during embryonic motility in chicks on embryonic (E) days 9, 11, and 13. This is an interesting developmental period during which the embryo first becomes large enough to be physically constrained by the shell. Additionally, sensory systems are incorporated at that time into the spinal motor circuitry. Previous electromyographic (EMG) recordings have shown that the basic pattern of muscle activity seen at E9, composed of half-center-type alternation of extensor and flexor activation, breaks down by E13. This breakdown in organization could be because of disruption of motor patterns by the immature sensory system and/or new spatial constraints on the embryo. The current article describes several changes in leg movement patterns during this period. Episodes of motility increase in duration and the intervals of time between episodes of motility decrease in length. The range of motion of the leg increases, but the overall posture of the leg becomes more flexed. It was found that in-phase coordination of movement among the hip, knee, and ankle decreased between E9 and E13 in agreement with the previous EMG recordings. However, it was also found that the decrease of in-phase coordination among the three joints was accompanied by an increase in the time any two joints were moving in the same manner. Furthermore, examination of in-phase coordination within pairs of joints showed that all three pairs were well coordinated at E9, but that at E13 the in-phase coordination of the ankle with the other two joints decreased, whereas the knee and hip coordination was maintained. This suggests that the hip-knee synergy was closely coupled and that coupling of the ankle with other joints was more labile. The authors conclude that embryos respond to the reduction of free space in the egg during this period not by decreasing the amplitude or coordination of leg movements in general, but instead by differentially controlling the movements of the ankle from those of the hip and knee. Additionally, the changes in movement patterns do not represent a decrease in organization, but rather an alteration of motor coordination possibly as the result of information from the newly acquired sensory systems. These data also support theories that limb central pattern generators (CPGs) are composed of unit CPGs for each joint that can be modulated individually and that this organization is already established early in embryogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call