Abstract

Trigeminal motoneurons (MNs) innervating the jaw-closing and jaw-opening muscles receive numerous inhibitory synaptic inputs from GABAergic and glycinergic neurons, which are essential for oromotor functions, such as the orofacial reflex, suckling, and mastication. The properties of the GABAergic and glycinergic inputs of these MNs undergo developmental alterations during the period in which their feeding behavior proceeds from suckling to mastication; however, the detailed characteristics of the developmental patterns of GABAergic and glycinergic transmission in these neurons remain to be elucidated. This study was conducted to investigate developmental changes in miniature inhibitory postsynaptic currents (mIPSCs) in masseter (jaw-closing) and digastric (jaw-opening) MNs using brainstem slice preparations obtained from Wistar rats on postnatal day (P)2–5, P9–12, and P14–17. The frequency and amplitude of glycinergic mIPSCs substantially increased with age in both the masseter and digastric MNs. The rise time and decay time of glycinergic mIPSCs in both MNs decreased during development. In contrast, the frequency of GABAergic components in masseter MNs was higher at P2–5 than at P14–17, whereas that in the digastric MNs remained unchanged throughout the postnatal period. The proportion of currents mediated by GABA-glycine co-transmission was higher at P2–5, and then it decreased with age in both MNs. These results suggest that characteristics related to the development of inhibitory synaptic inputs differ between jaw-closing and jaw-opening MNs and between GABAergic and glycinergic currents. These distinct developmental characteristics may contribute to the development of feeding behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call