Abstract
In humans, Fragile X Syndrome (FXS) is characterized by enhanced fear, hyperactivity, social anxiety, and, in a subset of individuals, autism. Many of the emotional and social deficits point to defects in the amygdala. We have previously shown defects in inhibitory neuron drive onto excitatory projection neurons in the basolateral amygdala (BLA) of juvenile Fmr1-/y knockout (KO) mice. Using pharmacological approaches, we have also previously revealed dynamic functional deficits in α1, α2, and α3 subunit-containing GABAA receptors (GABAARs α1, α2, and α3) during early postnatal development. In this study, we sought to determine whether these defects in GABAAR function are accompanied by changes in protein expression of GABAARs α1, α2, and α3 and the post-synaptic GABAAR-clustering protein gephyrin. Interestingly, we found that while the expression of these proteins did not significantly differ between wildtype (WT) and KO mice at each time point, the timing of developmental expression of GABAAR α1, α2, and gephyrin was altered. Collectively, these data reveal novel defects in inhibitory synapse protein expression during critical periods of early postnatal development that could contribute to observed inhibitory neurotransmission deficits in the KO mouse BLA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.