Abstract

This review article focuses on the ontogeny and the regulatory mechanisms involved in the modulation of the intracellular events governing the assembly and delivery of lipoproteins in human gut. The human fetal intestine organizes villi covered with well-differentiated enterocytes during the end of the first trimester in utero. One striking event is the formation of villi in the colonic mucosa similar to those of the small intestine. The small intestine exhibits very early (14-20 weeks) the capacity to absorb lipids, to elaborate most of the major lipoprotein classes (chylomicrons, very-low-density lipoproteins, low-density lipoproteins, high-density lipoproteins), and to efficiently export these lipoproteins from the intestinal cells. The ontogenic changes of lipid and lipoprotein synthesis are correlated with specific patterns of regulatory enzymes (HMG-CoA reductase, ACAT, MGAT) that are representative of key patterns such as the cholesterol pathway, cholesterol esterification, and neutral lipid pathway. The human fetal colon also has the capability to synthesize lipids, lipoproteins, and apolipoproteins. However, comapred with the small intestine, it is much less efficient at exporting these lipoproteins. Epidermal growth factor, insulin, and hydrocortisone, which are known modulators of the brush border digestive functions of the human gut, differentially modulate the synthesis and secretion of lipoproteins in the small intestine and colon. The use of human fetal gut represents a unique model to further our understanding of the complex biosynthetic molecular events essential for the formation and secretion of lipoproteins relevant to human intestine, both in normal or pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call