Abstract
BackgroundIn the domain of forensic science, the application of kinship identification and mixture deconvolution techniques are of critical importance, providing robust scientific evidence for the resolution of complex cases. Microhaplotypes, as the emerging class of genetic markers, have been widely studied in forensics due to their high polymorphisms and excellent stability.Results and discussionIn this research, a novel and high-efficient panel integrating 33 microhaplotype loci along with a sex-determining locus was developed by the next generation sequencing technology. In addition, we also assessed its forensic utility and delved into its capacity for kinship analysis and mixture deconvolution. The average effective number of alleles (Ae) of the 33 microhaplotype loci in the Guizhou Han population was 6.06, and the Ae values of 30 loci were greater than 5. The cumulative power of discrimination and cumulative power of exclusion values of the novel panel in the Guizhou Han population were 1-5.6 × 10− 43 and 1-1.6 × 10− 15, respectively. In the simulated kinship analysis, the panel could effectively distinguish between parent-child, full-sibling, half-sibling, grandfather-grandson, aunt-nephew and unrelated individuals, but uncertainty rates clearly increased when distinguishing between first cousins and unrelated individuals. For the mixtures, the novel panel had demonstrated excellent performance in estimating the number of contributors of mixtures with 1 to 5 contributors in combination with the machine learning methods.ConclusionsIn summary, we have developed a small and high-efficient panel for forensic genetics, which could provide novel insights into forensic complex kinships testing and mixture deconvolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.