Abstract
Saline lakes worldwide are undergoing drying, and as lake levels fall and areas contract, salinities increase. There is a critical need for data on salinity impacts to guide conservation for recovery of the aquatic productivity that supports migratory and breeding birds that depend on these habitats. Brine flies are key sources of food to these birds and are adapted for life in saline waters owing to their capacity for osmotic regulation. The sublethal effects on growth, development and reproduction were determined in experiments and field observations with the alkali fly Cirrula hians from alkaline lakes of differing salinity. The cost of osmoregulation to fitness from rising salinity was exhibited in slower growth rates of larvae, smaller size at maturity of pupae, reduced adult emergence success, and lower fecundity. The results identify a salinity management range of 25 to 100 g L−1 that would optimize life history traits and productivity of this insect as a food source for birds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.