Abstract

Short-chain chlorinated paraffins (SCCPs) are highly toxic to aquatic organisms, but their toxicity is yet not well characterized. In this study, the developmental toxicity of SCCPs to zebrafish embryos/larvae was evaluated, and a metabolomics approach was adopted to explore the impact of SCCPs exposure on the metabolism in zebrafish embryos. Exposure to SCCPs at concentrations of 1–200μg/L did not produce an observable effect on the hatching rate and morphological deformities of zebrafish embryos/larvae. However, the survival rate of zebrafish larvae in SCCPs exposure groups decreased in a concentration-dependent manner. The 13-day 50% lethal concentration (LC50) value of SCCPs was calculated to be 34.4μg/L. Exposure to SCCPs induced a significant change of overall metabolism, even at environmentally relevant concentrations (1–5μg/L). The most relevant pathways affected by SCCPs exposure were glycerophospholipid metabolism, fatty acid metabolism and purine metabolism. Exposure to SCCPs at concentrations of 1–5μg/L had begun to accelerate the β-oxidation of unsaturated fatty acids and very long chain fatty acids, and affect the transformation of guanine to xanthine in the pathway of purine metabolism. Furthermore, when the exposure concentrations of SCCPs were increased to 50–200μg/L, the levels of phospholipids and amino acids were significantly raised; whereas the levels of fatty acids, carnitines and inosine were significantly decreased. In view of the significant effect on metabolism, the sub-chronic and chronic toxicity of SCCPs to fish should be concerned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call