Abstract

Serially repeated pattern elements on butterfly wings offer the opportunity for integrating genetic, developmental, and functional aspects towards understanding morphological diversification and the evolution of individuality. We use captive populations of Bicyclus anynana butterflies, an emerging model in evolutionary developmental biology, to explore the genetic and developmental basis of compartmentalized changes in eyespot patterns. There is much variation for different aspects of eyespot morphology, and knowledge about the genetic pathways and developmental processes involved in eyespot formation. Also, despite the strong correlations across all eyespots in one butterfly, B. anynana shows great potential for independent changes in the size of individual eyespots. It is, however, unclear to what extent the genetic and developmental processes underlying eyespot formation change in a localized manner to enable such individualization. We use micromanipulations of developing wings to dissect the contribution of different components of eyespot development to quantitative differences in eyespot size on one wing surface. Reciprocal transplants of presumptive eyespot foci between artificial selection lines and controls suggest that while localized antagonistic changes in eyespot size rely mostly on localized changes in focal signal strength, concerted changes depend greatly on epidermal response sensitivities. This potentially reflects differences between the signal-response components of eyespot formation in the degrees of compartmentalization and/or the temporal pattern of selection. We also report on the phenotypic analysis of a number of mutant stocks demonstrating how single alleles can affect different eyespots in concert or independently, and thus contribute to the individualization of serially repeated traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.