Abstract

Location, abundance, and morphology of gill chloride cells were quantified during changes in osmoregulatory physiology accompanying early development in American shad, Alosa sapidissima. During the larval-juvenile transition of shad, gill chloride cells increased 3.5-fold in abundance coincident with gill formation, increased seawater tolerance, and increased Na(+),K(+)-ATPase activity. Chloride cells were found on both the primary filament and secondary lamellae in pre-migratory juveniles. Chloride cells on both the primary filament and secondary lamellae increased in abundance (1.5- to 2-fold) and size (2- to 2.5-fold) in juveniles held in fresh water from August 31 to December 1 (the period of downstream migration) under declining temperature. This proliferation of chloride cells was correlated with physiological changes associated with migration (decreased hyperosmoregulatory ability and increased gill Na(+),K(+)-ATPase activity). Increases in chloride cell size and number of fish in fresh water were delayed and of a lower magnitude when shad were maintained at constant temperature (24 degrees C). When juveniles were acclimated to seawater, chloride cell abundance on the primary filament did not (though size increased 1.5- to 2-fold), but cells on the secondary lamellae disappeared. Na(+),K(+)-ATPase was immunolocalized to chloride cells in both fresh water and seawater acclimated fish. The disappearance of chloride cells on the secondary lamellae upon seawater acclimation is evidence that their role is confined to fresh water. The proliferation of chloride cells in fresh water during the migratory-associated loss of hyperosmoregulatory ability is likely to be a compensatory mechanism for increasing ion uptake. J. Exp. Zool. 290:73-87, 2001.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call