Abstract

Desminopathies belong to a family of muscle disorders called myofibrillar myopathies that are caused by Desmin mutations and lead to protein aggregates in muscle fibers. To date, the initial pathological steps of desminopathies and the impact of desmin aggregates in the genesis of the disease are unclear. Using live, high-resolution microscopy, we show that Desmin loss of function and Desmin aggregates promote skeletal muscle defects and alter heart biomechanics. In addition, we show that the calcium dynamics associated with heart contraction are impaired and are associated with sarcoplasmic reticulum dilatation as well as abnormal subcellular distribution of Ryanodine receptors. Our results demonstrate that desminopathies are associated with perturbed excitation-contraction coupling machinery and that aggregates are more detrimental than Desmin loss of function. Additionally, we show that pharmacological inhibition of aggregate formation and Desmin knockdown revert these phenotypes. Our data suggest alternative therapeutic approaches and further our understanding of the molecular determinants modulating Desmin aggregate formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.