Abstract

Patent ductus arteriosus (PDA) complicates the hospital course of premature infants. Impaired oxygen (O2)-induced vasoconstriction in preterm ductus arteriosus (DA) contributes to PDA and results, in part, from decreased function/expression of O2-sensitive, voltage-gated potassium channels (Kv) in DA smooth muscle cells (DASMCs). This paradigm suggests that activation of the voltage-sensitive L-type calcium channels (CaL), which increases cytosolic calcium ([Ca2+]i), is a passive consequence of membrane depolarization. However, effective Kv gene transfer only partially matures O2 responsiveness in preterm DA. Thus, we hypothesized that CaL are directly O2 sensitive and that immaturity of CaL function in preterm DA contributes to impaired O2 constriction. We show that preterm rabbit DA rings have reduced O2- and 4-aminopyridine (Kv blocker)-induced constriction. Preterm rabbit DASMCs have reduced O2-induced whole-cell calcium current (ICa) and [Ca2+]i. BAY K8644, a CaL activator, increased O2 constriction, ICa, and [Ca]i in preterm DASMCs to levels seen at term but had no effect on human and rabbit term DA. Preterm rabbit DAs have decreased gamma and increased alpha subunit protein expression. We conclude that the CaL in term rabbit and human DASMCs is directly O2 sensitive. Functional immaturity of CaL O2 sensitivity contributes to impaired O2 constriction in premature DA and can be reversed by BAY K8644.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.