Abstract

BackgroundLysophosphatidylcholine (LPC) plays pivotal roles in several physiological processes and their disturbances are closely associated with various disorders. In this study, we described the development and validation of a reliable and simple flow injection analysis–tandem mass spectrometry (FIA‐MS/MS)‐based method using dried blood spots (DBS) for quantification of four individual LPC (C20:0, C22:0, C24:0, and C26:0).MethodsLysophosphatidylcholines were extracted from 3.2 mm DBS with 85% methanol containing 60 ng/ml internal standard using a rapid (30 min) and simple procedure. The analytes and the internal standard were directly measured by triple quadrupole tandem mass spectrometry in multiple reactions monitoring mode via positive electrospray ionization.ResultsMethod validation results showed good linearity ranging from 50 to 2000 ng/ml for each LPC. Intra‐ and inter‐day precision and accuracy were within the acceptable limits at four quality control levels. Recovery was from 70.5% to 107.0%, and all analytes in DBS were stable under assay conditions (24 h at room temperature and 72 h in autosampler). The validated method was successfully applied to assessment of C20:0‐C26:0LPCs in 1900 Chinese neonates. C26:0‐LPC levels in this study were consistent with previously published values.ConclusionWe propose a simple FIA‐MS/MS method for analyzing C20:0‐C26:0LPCs in DBS, which can be used for first‐tier screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.