Abstract

Cardiovascular disease is a leading cause of morbidity, mortality, and healthcare expenditure worldwide. Importantly, there is interindividual variation in response to cardiovascular medications, leading to variable efficacy and adverse events. Therefore a rapid, selective, sensitive and reproducible multi-analyte HPLC-MS/MS assay for the quantification in human plasma of atorvastatin, its major metabolites 2-hydroxyatorvastatin, atorvastatin lactone and 2-hydroxyatorvastatin lactone, plus bisoprolol and clopidogrel-carboxylic acid has been developed, fully validated, and applied to a large patient study. Fifty microliter plasma samples were extracted with a simple protein precipitation procedure involving acetonitrile with acetic acid (0.1%, v/v). Chromatographic separation was via a 2.7 μm Halo C18 (50 × 2.1 mm ID, 90 Å) column and gradient elution at a flow rate of 500 μL/min consisting of a mobile phase of water (A) and acetonitrile (B), each containing 0.1% formic acid (v/v), over a 6.0 min run time. The six analytes and their corresponding six deuterated internal standards underwent positive ion electrospray ionisation and were detected with multiple reaction monitoring. The developed method was fully validated with acceptable selectivity, carryover, dilution integrity, and within-run and between-run accuracy and precision. Mean extraction recovery for the analytes was 92.7–108.5%, and internal standard-normalised matrix effects had acceptable precision (coefficients of variation 2.2–12.3%). Moreover, all analytes were stable under the tested conditions. Atorvastatin lactone to acid interconversion was assessed and recommendations for its minimisation are made. The validated assay was successfully applied to analyse 1279 samples from 1024 patients recruited to a cardiovascular secondary prevention prospective study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.