Abstract

With the rapidly rising popularity and substantial evolution of electronic cigarettes (e-cigarettes) in the past 5–6 years, how these devices are used by vapers and consumers’ exposure to aerosol emissions need to be understood. We used puffing topography to measure directly product use. We adapted a cigarette puffing topography device for use with e-cigarettes. We performed validation using air and e-cigarette aerosol under multiple regimes. Consumer puffing topography was measured for 60 vapers provided with rechargeable “cig-a-like” or larger button-activated e-cigarettes, to use ad-libitum in two sessions. Under all regimes, air puff volumes were within 1 mL of the target and aerosol volumes within 5 mL for all device types, serving to validate the device. Vapers’ mean puff durations (2.0 s and 2.2 s) were similar with both types of e-cigarette, but mean puff volumes (52.2 mL and 83.0 mL) and mean inter-puff intervals (23.2 s and 29.3 s) differed significantly. The differing data show that product characteristics influence puffing topography and, therefore, the results obtained from a given e-cigarette might not read across to other products. Understanding the factors that affect puffing topography will be important for standardising testing protocols for e-cigarette emissions.

Highlights

  • With the rapidly rising popularity and substantial evolution of electronic cigarettes (e-cigarettes) in the past 5–6 years, how these devices are used by vapers and consumers’ exposure to aerosol emissions need to be understood

  • The modifications involved moving two pressure tubes connected to the pressure transducer towards the top of the topography head to reduce the condensation and build-up of e-cigarette aerosol within the tubing, which results from increased aerosol concentrations and viscosity compared with that from combustible cigarettes

  • Flow rate calibration across the range 2 Mean puff volume (mL)/s to 120 mL/s resulted in all air puff volumes falling within the pre-set target tolerance of ±​1 mL across the range of 20–80 mL

Read more

Summary

Introduction

With the rapidly rising popularity and substantial evolution of electronic cigarettes (e-cigarettes) in the past 5–6 years, how these devices are used by vapers and consumers’ exposure to aerosol emissions need to be understood. Puffing topography data have been extensively studied for users of combustible cigarettes, and the impact on smoking experience has been widely reported[9,11,14] These studies generally show that puffing topography devices do not significantly alter smokers’ exposure, some reductions in the intensity of smoking attributes have been reported. Equivalent puffing topography data for users of e-cigarettes are limited, but initial studies with video recordings suggest increased puff durations compared with cigarette smoking[15,16]. The modified topography device has been used to increase understanding of how e-cigarette use varies between individuals and devices, which is an important step on the road to relevant standards for laboratory aerosol emission tests and assessing user exposure to the constituents of e-cigarette emissions either on the market or pre-launch

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.