Abstract

The China low activation martensitic (CLAM) steel is being developed at the Institute of Nuclear Energy Safety Technology (INEST) under wide collaboration within China. Significant R&D work on CLAM steel was carried out to help make it suitable for industrial applications. The effect of refining processes and thermal aging on composition, microstructures and mechanical properties were investigated. Material properties before irradiation including impact, fracture toughness, thermal aging, creep and fatigue properties etc. were assessed. A series of irradiation tests in the fission reactor HFETR in Chengdu up to 2dpa and in the spallation neutron source SINQ in Paul Scherrer Institute up to 20dpa were performed. PbLi corrosion tests for more than 10,000h were done in the DRAGON-I and PICOLO loops. Fabrication techniques for a test blanket module (TBM) are being developed and a 1/3 scale TBM prototype is being fabricated with CLAM steel. Recent progresses on the development status of this steel are presented here. The code qualification of CLAM steel is under plan for its final application in ITER-TBM and DEMO in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.