Abstract

The photothermal imaging technique is a nondestructive inspection technique that visualizes the inside of a metal by utilizing the photothermal effect. Although the concept of photothermal imaging techniques has been proposed, systematic research on the characteristics thereof has not been conducted. This study attempts to enhance the measurement and reconstruction process for a photothermal imaging method. To detect the edge of a subsurface pattern more accurate, low-pass FFT (fast Fourier transform) filter for noise reduction of measured data, and derivative detectors are adopted for the reconstruction of photothermal imaging. The adopted methods are applied to and visualize 20 mm × 25 mm × 1.5 mm copper block including radius 5 mm, height 1 mm cylindrical resin as a subsurface pattern. The results show that the developed method can detect the edge of the resin subsurface 50% more accurately than the previous reconstruction method for photothermal imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.