Abstract

Objective. This study was aimed to study tissue distribution and tumor imaging potential of 68Ga-glycopeptide (GP) in tumor-bearing rodents by PET. Methods. GP was synthesized by conjugating glutamate peptide and chitosan. GP was labeled with 68Ga chloride for in vitro and in vivo studies. Computer outlined region of interest (counts per pixel) of the tumor and muscle (at the symmetric site) was used to determine tumor-to-muscle count density ratios. To ascertain the feasibility of 68Ga-GP in tumor imaging in large animals, PET/CT imaging of 68Ga-GP and 18F-FDG were conducted in New Zealand white rabbits bearing VX2 tumors. Standard uptake value of tumors were determined by PET up to 45 min. To determine blood clearance and half-life of 68Ga-GP, blood samples were collected from 10 seconds to 20 min. Results. Radiochemical purity of 68Ga-GP determined by instant thin-layer chromatography was >95%. Tumor uptake values (SUV) for 68Ga-GP and 18F-FDG in New Zealand white rabbits bearing VX2 tumors were 3.25 versus 7.04. PET images in tumor-bearing rats and rabbits confirmed that 68Ga-GP could assess tumor uptake. From blood clearance curve, the half-life of 68Ga-GP was 1.84 hr. Conclusion Our data indicate that it is feasible to use 68Ga-GP to assess tumor angiogenesis.

Highlights

  • With progress of molecular biology in recent years, imaging techniques are undergoing tremendous development and improvement

  • The vascular density can provide a prognostic indicator of metastatic potential, with the highly vascular tumors having a higher incidence of metastasis than poorly vascular tumors [1]

  • To evaluate whether GP could be labeled with a different isotope for Positron emission tomography (PET) imaging of tumors, here, we report the tissue distribution and tumor imaging potential of 68Ga-GP

Read more

Summary

Objective

This study was aimed to study tissue distribution and tumor imaging potential of 68Ga-glycopeptide (GP) in tumorbearing rodents by PET. To ascertain the feasibility of 68Ga-GP in tumor imaging in large animals, PET/CT imaging of 68Ga-GP and 18F-FDG were conducted in New Zealand white rabbits bearing VX2 tumors. Standard uptake value of tumors were determined by PET up to 45 min. To determine blood clearance and half-life of 68Ga-GP, blood samples were collected from 10 seconds to 20 min. Tumor uptake values (SUV) for 68Ga-GP and 18F-FDG in New Zealand white rabbits bearing VX2 tumors were 3.25 versus 7.04. PET images in tumor-bearing rats and rabbits confirmed that 68Ga-GP could assess tumor uptake. The half-life of 68Ga-GP was 1.84 hr

Introduction
Materials and Methods
Results
Discussion
Relevance
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call