Abstract
The current study was aimed at the assessment of the effect of chitosan-ZnO/Selenium nanoparticles scaffold on infected wound healing and care of paediatric surgery treatment. The nanoparticle scaffolds were developed from sources such as chitosan (CS), different concentrations of zinc oxide (ZnO), and Selenium (SeNPs) nanoparticles by freeze-drying method. The structural and chemical properties of nanoparticles were investigated by UV-Vis, fourier transform infrared spectroscopy (FTIR), and phase identification by x-ray diffraction analysis. The surface morphology of CS, chitosan-ZnO (CS-ZnO) and chitosan-ZnO/SeNPs was analysed using a scanning electron microscope. The incorporation of ZnO and SeNPs along with CS polymer induces antioxidant and antimicrobial functions. The bacterial susceptibility to nanoparticle scaffolds against Escherichia coli and Staphylococcus aureus showed the excellent antibacterial effects of ZnO and SeNPs. In-vitro studies of fibroblast of NIH 3T3 and HaCaT cell lines revealed the biocompatibility, cell adhesion, cell viability, and proliferation of scaffold in the wound site. Also, results of in-vivo studies strongly enhanced collagen synthesis, re-epithelialization, and rapid wound closure. Thus, the synthesised chitosan-ZnO/SeNPs nanoparticle scaffold resulted in significant improvement in histopathological indices in the full thickness of wound healing after nursing care of paediatric fracture surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.