Abstract
The investigation on invertase (INV) and glucose oxidase (GOx)-dominated biological process offers a new opportunity for the development of clinical diagnosis and prognostic treatment. Herein, a ZnO nanoflowers (ZnONFs)-assisted DNAzyme-based electrochemical platform for INV- and GOx-dominated biosensing is proposed by the change of pH in microenvironment. In this strategy, INV can usually catalyze the dissolution of sucrose to generate glucose, and glucose is then consumed by GOx to produce H2O2 and gluconic acid, in which ZnONFs can be effectively etched into free Zn2+ ions. Subsequently, the released Zn2+ ions have a shearing action for Zn2+-specific DNAzyme, thus triggering hybridization chain reaction along with the imbedding of methylene blue. The excellent electrochemical signals illustrate the method can be employed well for testing sucrose, INV and GOx with a low detection limit (0.019 μM, 0.047 mU/mL and 0.012 mU/mL, respectively). Finally, a series of basic and advanced logic gates (YES, AND, INHIBIT, and AND-AND-INHIBIT) in the biological process are constructed with different logic inputs, providing a valuable platform for the establishment of advanced molecular devices for bioanalysis and clinical diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.