Abstract

In this paper, in order to achieve the development of a novel biodegradable dual-phase alloy in a Ca–Mg–Zn system, the establishment of the control strategy of degradation behavior of alloys composed of two phases was attempted by the control of alloy composition, constituent phases, and microstructure. By combining two phases with different dissolution behavior, biodegradable alloys are expected to exhibit multiple functions. For example, combining a suitable slow dissolving phase with a faster dissolving second phase may allow for dynamical concavities formation during immersion on the surface of the alloy, assisting the invasion and establishment of bone cells. Without the careful control of the microstructure, however, there is a risk that such dual-phase alloy rapidly collapses before the healing of the affected area. In this study, ten two-phase alloys consisting of various different phases were prepared and their degradation behaviors were examined. Consequently, it was found that by combining the IM3 and IM1 intermetallic phases with the compositions of Ca2Mg5Zn13 and Ca3Mg4.6Zn10.4, the expected degradation behavior can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call