Abstract
Along with recent advances in neuroscience, near-infrared spectroscopy (NIRS) has been widely used to measure changes in cerebral oxygenation non-invasively. An NIRS system can be constructed to be portable unlike other imaging modalities, but its signals are often distorted by artifacts generated by arterial pulsation, vasomotion and head motion. To overcome these problems, we have developed a wireless NIRS system with a real time accelerometer that allows noise reduction. Our wireless NIRS system includes a microcontroller, a Bluetooth communication, a fPCB (flexible printed circuit board), an accelerometer, batteries, LEDs (light emitting diode) and PDs (photodiode). Distorted signal caused by head motion was removed by active noise cancellation (ANC) algorithm. Two different tasks, arterial occlusion and brain hypoxia, were tested to validate the performance of our system. During arterial occlusion and breath holding, the NIRS signal showed corresponding hemodynamic changes such as increase in deoxy-hemoglobin (Hbr) and decrease in oxy-hemoglobin (HbO2) concentrations. Signal distortions generated by head motion were effectively removed. Wireless NIRS system combined with real time noise cancellation algorithm has great potential to be utilized in brain-computer interface (BCI) for physically challenged people, dynamic exercise tasks and cognitive studies for children. Furthermore we expect the system will be highly applicable in neuroscience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.