Abstract

The demand for improved components with a wide range of properties is a reality in today's hardmetal market. Furthermore, supply shortages of raw materials such as W and especially Co resulted in rapid price fluctuations. Combined with stricter environmental legislation and health protection, these facts prompt the demand for alternative or modified binders. Therefore, in this work, WC-NiCrMo composites were developed as a potential alternative to conventional WC-Co hardmetals. To evaluate this new hardmetal composite, prototypes of submicrometric WC with approximately 15 vol% of NiCrMo binder were produced by conventional powder metallurgy route. Thermodynamic assessment, wettability testing and constant heating rate dilatometry were performed to design an adequate sintering route. A detailed characterization of the mechanical properties (Young's modulus, Vickers hardness and fracture toughness), together with corrosion resistance assessment (OCP, polarization curves, EIS) and abrasive wear (ball-cratering) resistance evaluation were undertaken. Good wettability of molten NiCrMo binder on WC surface was observed, and highly dense compacts could be successfully attained by gas pressure sintering. The new WC-NiCrMo composite has lower hardness but higher corrosion resistance and better wear resistance than the conventional WC-Co hardmetals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.