Abstract

Visible light activated nitrogen doped TiO2 thin films were developed on 304 stainless steel by sol spraying method using a common painting airbrush. Thin films with different thickness were prepared and calcined at various temperatures from 400 to 600°C. The samples were studied using ellipsometry, XRD, GIXRD, XPS, DRS, SEM and FESEM. Photocatalytic activities of the films were investigated by measuring their ability to degrade methylene blue solution under visible light irradiation. Results revealed that uniform nanostructured films with a thickness range of 29–150nm were successfully prepared on stainless steel by sol spraying. Doping nitrogen into TiO2 structure restricted the crystallite growth of anatase phase and reduced the band gap energy to 2.85eV and therefore, activated TiO2 in visible light region. Increasing calcination temperature not only promoted crack formation in thin films, but also encouraged Fe diffusion from substrate into thin films structure. However, the N doped TiO2 film calcined at 500°C with a thickness of 150nm indicated a significant photocatalytic activity in visible light with 22% higher efficiency in comparison with undoped TiO2 film. Development of TiO2 based photocatalytic thin films by a simple method of airbrushing, builds up the hope for industrial scale applications in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.