Abstract

In tall building, shading design is a configuration that includes geometry, material, and the system. Currently, the design of the shade found for building’s envelope is not only used to improve the thermal performance, but is also required to provide aesthetic value to the appearance of a building. The use of shading design in the form of vertical shade at certain places will provide differences in the acquisition of sunlight for interior spaces. Therefore, by shading design the appearance will certainly affect the thermal performance of the building envelope. This study aims to develop and propose a model that can be used as parameter measuresof the effect of shading design variations on the thermal performance of the building envelope. This variation will include shading design concept which applies different vertical shading that covers glass material, the shading width, and the shading angle. This research design includes the calculation of the shade coefficient (SC) and overall thermal transfer value (OTTV) of each variant, followed by using multiple linear regression (MLR) analysis with manufacturer’s SC glass, shading width, and shading angle as the predictor variables. The study is conducted by two parts: designing of vertical shading parameters that affect the value of the SC and determining the thermal performance of the building. The MLR analysis is carried out to obtain a linear equation showing the effect of shading design on thermal performance of the building envelope. Based on the regression analysis result, it can be seen that the manufacturer’s SC of glass has the biggest impact on the OTTV value, while the shading angle has the lowest. With 95.2%-98% of the predictors data can explain the value of OTTV, the model can be used as the tool for designing vertical shading for reducing the energy consumption in the building.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.