Abstract

In dry western Unites States forests where past resource management has altered the ecological role of fire and stand characteristics alike, mechanical thinning and prescribed burning are commonly applied in wildfire hazard abatement. The reduced surface fuel loads and stand structures resulting from fuels modifications are temporary, yet few studies have assessed the lifespan of treatment effects. We sampled forest fuels and vegetation following fuels reduction in a chronosequence of time since treatment in the northern Sierra Nevada and southern Cascade regions of California. Treatments altered overstory characteristics including stand density, basal area, and species composition. These effects were still present on the oldest treatment sites (8–15 years post-treatment). Other stand characteristics, particularly timelag fuel loads, seedling density, and shrub cover, exhibited substantial variability, and differences between treatment age classes and between treatment and control groups were not statistically significant.

Highlights

  • The disturbance role of wildfire in many dry, temperate western United States forests has been altered through fire exclusion, timber harvesting, and livestock grazing

  • In the xeric environment characteristic of the eastern Sierra Nevada, large-diameter woody fuels may remain on site for many years without follow-up treatment of activity fuels produced during thinning [41]

  • The initial post-harvest peak in 1000-h loads is clear in Figure 7, which shows coarse woody fuel loads in eastside pine sites treated with mechanical thinning alone

Read more

Summary

Introduction

The disturbance role of wildfire in many dry, temperate western United States forests has been altered through fire exclusion, timber harvesting, and livestock grazing. These land-use practices have affected forest structure and species composition, increasing surface fuel loads, tree density, dominance of shade-tolerant tree species, and forest homogeneity [1,2,3]. Many historically fire-frequent forests are vulnerable to spatially extensive high-severity wildfire [4]. Fuels reduction treatments are intended to reduce the potential for high-intensity, high-severity wildfire by reducing the quantity and continuity of forest fuels. A number of techniques are employed to meet these fuels reduction objectives, and each method has associated effects on forest structure

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.