Abstract

This paper introduces the creation of a module for Uncertainty Quantification (UQ) specifically designed for VVER analysis through the implementation of the STREAM/RAST-V two-step approach. The aim was to expand the range of use by developing a UQ module tailored for analyzing VVER. This research presents two innovative computational functionalities: (1) development of a library for the pin-based pointwise energy slowing down method (PSM), and (2) extension of the analysis area to study hexagonal-geometry fuel assemblies. The proposed UQ scheme was evaluated through verification using UAM benchmark, and comparative analysis between codes using SCALE 6.2.2 for. STREAM provides an accuracy comparable to that of SCALE 6.2.2. Additionally, a PSM covariance library was utilized in the calculations, achieving 0.7941% and 0.7907% accuracies in the hot full power and hot zero power calculations, respectively. To assess the UQ sequences in the two-step method, the STREAM/RAST-V calculation scheme was verified using the STREAM lattice code. To conclude, this study furnishes comprehensive insights into the development of the UQ module within the two-step method for VVER analysis, and it validates its performance through utilization of the UAM benchmark.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call