Abstract
Ubiquitin (Ub) is a highly conserved protein that is covalently attached to substrate proteins as a post-translational modification to regulate signaling pathways such as proteasomal degradation and cell cycle/transcriptional regulation in the eukaryotic cellular environment. Ub signaling is regulated by the homeostasis of substrate protein ubiquitination/deubiquitination by E3 ligases and deubiquitinating enzymes (DUBs) in healthy eukaryotic systems. One such DUB, ubiquitin C-terminal hydrolase L1 (UCHL1), is endogenously expressed in the central nervous system under normal physiological conditions, but overexpression and/or mutation has been linked to various cancers and neurodegenerative diseases. The lack of UCHL1 probing strategies suggests development of a selective Ub variant (UbV) for probing UCHL1's role in these disease states would be beneficial. We describe a computational design approach to investigate UbVs that lend selectivity, both binding and inhibition, to UCHL1 over the close structural homologue UCHL3 and members of other DUB families. A number of UbVs, mainly those containing Thr9 mutations, displayed appreciable binding and inhibition selectivity for UCHL1 over UCHL3, compared to wild-type Ub in in vitro assays. By appending reactive electrophiles to the C-terminus of the UbVs, we created the first activity-based probe (ABP) with demonstrated reaction selectivity for UCH family DUBs over other families in cell lysates. Further kinetic analysis of covalent inhibition by the UbV-ABP with UCHL1 and UCHL3 offers insight into the future design of UCHL1 selective UbV-ABP. These studies serve as a proof of concept of the viability of the in silico design of ubiquitin variants for UCH family DUBs as a step toward the development of macromolecular UCHL1 inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.