Abstract

The development of biomimetic scaffolds containing cartilage, calcified cartilage, and bone regeneration for precise osteochondral repair remains a challenge. Herein, a novel tri-layered scaffold-with a top layer containing type II atelocollagen and chondroitin sulphate for cartilage regeneration, an intermediate layer with type II atelocollagen and hydroxyapatite for calcified cartilage formation, and a bottom layer with type I atelocollagen and hydroxyapatite for bone growth-that can be built using liquid-phase cosynthesis, is described. The tri-layered scaffolds are mechanically demonstrably superior and have a lower risk of delamination than monolayer scaffolds. This is due to higher cohesion arising from the interfaces between each layer. In vitro results show that although monolayer scaffolds can stimulate bone marrow stem cells to differentiate and form cartilage, calcified cartilage, and bone separately (detected using quantitative polymerase chain reaction analysis and staining with safranin-O and Alizarin Red S), the tri-layered scaffolds support the regeneration of cartilage, calcified cartilage, and bone simultaneously after 2 and 4 months of implantation (detected using gross and micro-computed tomography images, histological staining, and Avizo, a software used to detect microlevel defects in metals). This work presents data on a promising approach in devising strategies for the precise repair of osteochondral defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.