Abstract
An on-line sample preconcentration technique based on transient trapping (tr-trapping) in micellar electrokinetic chromatography (MEKC) was applied for steroid detection with UV (tr-trapping-UV) and electrospray ionization mass spectrometry detection (tr-trapping-ESI-MS). ESI-MS was used to improve the sensitivity in MEKC. The MEKC separation was carried out using volatile ammonium formate as a background solution to facilitate the coupling with ESI-MS. The partial introduction of a sodium dodecyl sulfate (SDS) micellar solution before the introduction of a sample solution to the capillary provided the effective preconcentration of analytes. At the same time, the SDS micelle would not enter the ESI-MS system, so its interference in ESI-MS detection was suppressed under the optimal condition, then five steroids can be separated by the developed method. In tr-trapping-ESI-MS, an acidic condition of pH 3.5 was employed to suppress the electroosmotic flow, which can avoid micellar solution migrating to the MS instrument. The developed method showed that the micellar solution requires a twofold slower time than the sample to migrate along the column, which can prohibit the cause of the problem with the MS instrument and interference signal of SDS in the steroid's detection. The tr-trapping-ESI-MS protocol showed up to 540-fold enhancements of the peak intensity and 50-fold improvement of the limit of detection compared with capillary zone electrophoresis using androsterone as a model sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.