Abstract

Background and purposeEffective combination treatments with fractionated radiotherapy rely on a proper understanding of the dynamic responses that occur during treatment. We explored the effect of clinical fractionated radiotherapy on the development and timing of radioresistance in tumor cells. Methods and materialsDifferent colon (HT29/HCT116/COLO320/SW480/RKO) and high-grade astrocytoma (D384/U-251MG) cancer cell lines were treated for 6 weeks with daily fractions of 2 Gy, 5 days per week. Clonogenic survival was determined throughout the treatment period. In addition, the radiosensitivity of irradiated and non-irradiated was compared. Finally, the effect of different dose fractions on the development of radioresistance was determined. ResultsAll cell lines developed radioresistance within 2–3 weeks during fractionated radiotherapy. This was characterized by the occurrence of a steady state phase of clonogenic survival. In U-251MG cells this was accompanied by increased cell senescence and stemness. After recovering from six weeks of treatment, the radiosensitivity of fractionally irradiated and non-irradiated cells was similar. Including transient radioresistance, described as (α/β)−(d+1), as a factor in the classic LQ model resulted in a perfect fit with the experimental data observed during fractionated radiotherapy. This was confirmed when different dose fractions were applied. ConclusionsFractionated irradiation of cancer cells in vitro following clinical radiation schedules induces a reversible radioresistance response. This adaptive response can be included in the LQ model as a function of the dose fraction and the alpha/beta-ratio of a given cell line. These findings warrant further investigation of the mechanisms and clinical relevance of adaptive radioresistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call