Abstract
In order to accurately measure and control high-frequency grinding force in the process of grinding, a novel measurement method of three-dimensional grinding force with mutual perpendicular and independent elastic elements is proposed in this paper. To detect the high frequency grinding force, a resistance strain-type three-dimensional grinding force measurement platform was designed and developed. The key performance indicators of the measurement platform were investigated via finite element simulation. In addition, the detection performance of the measurement platform was researched and verified through natural frequency measurement experiments, static calibration experiments, and grinding experiments. The results show that the proposed method can effectively alleviate the inherent contradiction between natural frequency and sensitivity in the traditional dynamometer; the measurement platform as-established fully meets the performance requirements of three-dimensional dynamic grinding force detection. To this effect, the results discussed here provide technical support for achieving accurate detection of high frequency grinding force, monitoring grinding processes, optimizing grinding parameters, and improving grinding quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.