Abstract

FYVE-type zinc finger-containing phosphoinositide kinase (PIKfyve) catalyzes the formation of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) from phosphatidylinositol 3-phosphate (PI(3)P). PIKfyve has been implicated in multiple cellular processes, and its role in the regulation of toll-like receptor (TLR) pathways and the production of proinflammatory cytokines has sparked interest in developing small-molecule PIKfyve inhibitors as potential therapeutics to treat autoimmune and inflammatory diseases. We developed three orthogonal assays to identify and qualify small-molecule inhibitors of PIKfyve: (1) a purified component microfluidic enzyme assay that measures the conversion of fluorescently labeled PI(3)P to PI(3,5)P2 by purified recombinant full-length human 6His-PIKfyve (rPIKfyve); (2) an intracellular protein stabilization assay using the kinase domain of PIKfyve expressed in HEK293 cells; and (3) a cell-based functional assay that measures the production of interleukin (IL)-12p70 in human peripheral blood mononuclear cells stimulated with TLR agonists lipopolysaccharide and R848. We determined apparent Km values for both ATP and labeled PI(3)P in the rPIKfyve enzyme assay and evaluated the enzyme's ability to use phosphatidylinositol as a substrate. We also tested four reference compounds in the three assays and showed that together these assays provide a platform that is suitable to select promising inhibitors having appropriate functional activity and confirmed cellular target engagement to advance into preclinical models of inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.