Abstract

With the ripening of 3D printing technology and the discovery of a variety of printable materials, 3D-printed vascular stents provide new treatment options for patients with angiocardiopathy. Bioresorbable stent not only combines the advantages of metallic stent and drug-coated balloon, but also avoids the disadvantages of them. 3D printing is also an economical and efficient way to produce stents and makes it possible to construct complex structures. In this study, stents made from poly(l-lactic acid) (PLLA), poly(ε-caprolactone) (PCL) and poly(l-lactide-co-caprolactone) (PLCL) were manufactured by 3D printing and evaluated for radial strength, crystallinity and molecular weight. PLCL copolymerized by different proportions of lactic acid and caprolactone showed different mechanical and degradation properties. This demonstrated the potential of 3D printing as a low-cost and high throughput method for stent manufacturing. The PLLA and PLCL 95/5 stents had similar mechanical properties, whereas PLCL 85/15 and PCL stents both had relatively low radial strength. In general, PLCL 95/5 had a faster degradation rate than PLLA. These two materials were made into peripheral vascular bioresorbable scaffolds (BRS) and further studied by additional bench testing. PLCL 95/5 peripheral BRS had superior mechanical properties in terms of flexural/bending fatigue and compression resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call