Abstract

PurposeThe purpose of this study was to formulate a complete protein food from lentil flour (LF) and egg powder (EP) through microwave-assisted extrusion technology.Design/methodology/approachIn the first part of the hybrid technology, the feed proportion and extrusion conditions were optimized through design expert using central composite rotatable design. In the second part of hybrid technology, the optimized protein pellets (PP) obtained were subjected to microwave heating (MH) for 50,100, 150, 200 and 250 s.FindingsThe optimum predicted conditions for development of pellets using extrusion cooking were feed proportion (85% LF and 15% EP), barrel temperature (140°C), screw speed (340 rpm) and feed moisture content (12%). When these pellets were subjected to MH, 150 s of heating time was considered as prudential to induce desirable quality changes in PP. The increase in sectional expansion index, crispness and overall acceptability from 0.637 to 0.659, 4.51 to 6.1 and 3.27 to 3.59 with corresponding decrease in bulk density and breaking strength from 73.33 to 69.75 kg/cm3 and 6.24 to 5.13 N during 150 s of MH indicated that quality characteristics of extruded PPs were improved after MH.Practical implicationsNowadays, consumers have become more health conscious than ever, and the demand for nutritious snacks has increased many folds. However, the high protein content restricts expansion of snacks, which was overcome by subjecting extruded pellets to MH to produce third generation pellets. Furthermore, the PP has a protein content of 31.62%, which indicates that if an average person consumes 100 g of these snacks, it will suffice 60% of total recommended dietary intake (0.75 g/kg body weight/day). Lentil-based pellets expanded by use of such hybrid technology (microwave-assisted extrusion cooking) can help to provide a feasible, low cost and protein-rich diet for malnourished population besides being a value addition to lentils.Originality/valueLF in combination with EP was tested for the first time for development of nutrient dense pellets. Moreover, use of microwave-assisted extrusion cooking offers a workable and innovative technique of developing protein-rich pellets with improved physico-chemical and sensory attributes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call