Abstract

Endothelial keratoplasty is the main surgical procedure for treating corneal endothelial dysfunction (CED), which is limited by the global shortage of donor corneas. Herein, we developed and evaluated the modified thermoplastic polyurethane (M-TPU) films with gelatin-glycidyl methacrylate to replace the corneal endothelial function and maintain corneal transparency. The films displayed comparable light transmission characteristics with normal corneas and clinically favorable mechanical properties for surgical manipulation. After surface modification, the hydrophilicity and biocompatibility of M-TPU films were significantly improved. In the rabbit CED model, the M-TPU implants exhibited firm adhesion to the exposed stromal surface. The rabbit corneal transparency and thickness could be restored completely within 1 week of M-TPU film implantation. There was no significant inflammatory reaction and immune rejection during the follow-up of 1 month. Proteomic analysis suggested that the complement inhibition, the increase of mineral absorption, and the decrease of P53 apoptosis signaling pathway and lysine degradation might be beneficial in maintaining the corneal transparency. Overall, our study demonstrated the potential of M-TPU films as artificial implants for the replacement of corneal endothelial function to restore corneal thickness and transparency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call