Abstract

Even though the main components of all lignocellulosic feedstocks include cellulose, hemicellulose, as well as the protective lignin matrix, there are some differences in structure, such as in hardwoods and softwoods, which may influence the degradability of the materials. Under this view, various types of biomass might require a minimal set of enzymes that has to be tailor-made. Partially defined complex mixtures that are currently commercially used are not adapted to efficiently degrade different materials, so novel enzyme mixtures have to be customized. Development of these cocktails requires better knowledge about the specific activities involved, in order to optimize hydrolysis. The role of filamentous fungus Myceliophthora thermophila and its complete enzymatic repertoire for the bioconversion of complex carbohydrates has been widely proven. In this study, four core cellulases (MtCBH7, MtCBH6, MtEG5, and MtEG7), in the presence of other four “accessory” enzymes (mannanase, lytic polyssacharide monooxygenase MtGH61, xylanase, MtFae1a) and β-glucosidase MtBGL3, were tested as a nine-component cocktail against one model substrate (phosphoric acid swollen cellulose) and four hydrothermally pretreated natural substrates (wheat straw as an agricultural waste, birch, and spruce biomass, as forest residues). Synergistic interactions among different enzymes were determined using a suitable design of experiments methodology. The results suggest that for the hydrolysis of the pure substrate (PASC), high proportions of MtEG7 are needed for efficient yields. MtCBH7 and MtEG7 are enzymes of major importance during the hydrolysis of pretreated wheat straw, while MtCBH7 plays a crucial role in case of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key enzymes for the hydrolysis of the hardwood (birch). Optimum combinations were predicted from suitable statistical models which were able to further increase hydrolysis yields, suggesting that tailor-made enzyme mixtures targeted toward a particular residual biomass can help maximize hydrolysis yields. The present work demonstrates the change from “one cocktail for all” to “tailor-made cocktails” that are needed for the efficient saccharification of targeted feed stocks prior to the production of biobased products through the biorefinery concept.

Highlights

  • Cellulose, the most abundant polysaccharide on Earth, is a remarkable pure organic polymeric component of plant material, consisting solely of 1,4-linked β-D-glucopyranose units held together in a giant straight chain molecule

  • The crystallinity index (CrI) for all samples was calculated from the X-ray diffraction (XRD) data and revealed that birch showed the highest value, followed by wheat straw and spruce (Table 4)

  • The efficient hydrolysis of pretreated lignocellulosic substrates requires a consortium of enzymes mainly comprised of high levels of cellulases, together with lower amounts of enzymes that attack non-cellulosic components, such as lignin and hemicellulose

Read more

Summary

Introduction

The most abundant polysaccharide on Earth, is a remarkable pure organic polymeric component of plant material, consisting solely of 1,4-linked β-D-glucopyranose units held together in a giant straight chain molecule. A variety of microorganisms are known for producing a set of enzymes capable of degrading this insoluble polymer to soluble sugars, primarily cellobiose, and glucose. Enzymes involved in these processes are called cellulases and are consisting of at least three classes of enzymes, namely, endogluganases (EG), cellobiohydrolases (CBH), and β-glucosidases (BG). Apart from biofuels, industrial bioproducts, chemicals, and materials that can be produced from the decomposition of biomass, play a key role in the so-called “biorefinery concept” for fostering a new bioindustry (Paster et al, 2003; Cherubini, 2010)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.