Abstract

The heart of lung-breathing vertebrates normally shows an asymmetric arrangement of its venoatrial connections along the left-right (L-R) body axis. The systemic venous tributaries empty into the right atrium while the pulmonary venous tributaries empty into the left atrium. The ways by which this asymmetry evolves from the originally symmetrically arranged embryonic venous heart pole are poorly defined. Here we document the development of the venous heart pole in Xenopus laevis (stages 40-46). We show that, prior to the appearance of the mouth of the common pulmonary vein (MCPV), the systemic venous tributaries empty into a bilaterally symmetric chamber (sinus venosus) that is demarcated from the developing atriums by a circular ridge of tissue (sinu-atrial ridge). A solitary MCPV appears during stage 41. From the time point of its first appearance onwards, the MCPV lies cranial to the sinu-atrial ridge and to the left of the developing interatrial septum and body midline. L-R lineage analysis shows that the interatrial septum and MCPV both derive from the left body half. The CPV, therefore, opens from the beginning into the future left atrium. The definitive venoatrial connections are established by the formation of a septal complex that divides the lumen of the venous heart pole into systemic and pulmonary venous flow pathways. This complex arises from the anlage of the interatrial septum and the left half of the sinu-atrial ridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call