Abstract

Due to urban overcrowding, the population density of residential areas and water use per unit are increasing. Therefore, it is necessary to study the flow of water supplied to cities and to improve the healthy circulation of urban water. This study used Modelica, a non-causal analytical program. Using Open Modelica, the researchers constructed a model linking water distribution and sewerage, as the basis of a balanced urban water model. Using the programmer's toolkit provided by EPA-NET and EPA-SWMM, which are commonly used to simulate the existing water supply and sewage pipe networks, Open Modelica-based water distribution networks and sewage pipe networks can be connected and simulated based on the customer block. A model was built so that 90% of the hourly water consumption supplied to the water supply pipe network can be automatically introduced into the sewage pipe network. If a matching table is constructed to connect the nodes of the water supply pipe network and the sewer pipe network, the nodes will reflect in the graphical user interface (GUI) developed in Open Modelica. It was developed to enable modification of links, pumps, tanks, and valves. The 48-hour water supply was simulated using the developed model, and it was confirmed that water supply and sewage networks were successfully connected. In the future, we plan to develop a more expanded and realistic urban water circulation model by considering additional urban water circulation factors, such as sewage treatment, water reuse, rainwater use, storm runoff, and low-impact development facilities. Through this study, it was confirmed that Modelica can simulate changes in the system over time. Since it is a formula-based non-causal simulation language, it is possible to establish and reuse relationships between blocks through block-by-block development of urban water circulation elements. It is expected to contribute to the visualization and concretization of future urban water circulation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.