Abstract

The barn owl's head grows after hatching, causing interaural distances to more than double in the first 3 weeks posthatch. These changes expose the bird to a constantly increasing range of interaural time cues. We have used Golgi and ultrastructural techniques to analyze the development of the connections and cell types of the nucleus magnocellularis (NM) and the nucleus laminaris (NL) with reference to the growth of the head. The time coding circuit is formed but immature at the time of hatching. In the month posthatch, the auditory nerve projection to the NM matures, and appears adult-like by posthatch day (P)21. NM neurons show a late growth of permanent dendrites starting at P6. Over the first month, these dendrites change in length and number, depending upon rostrocaudal position, to establish the adult pattern in which high best frequency neurons have few or no dendrites. These changes are not complete by P21, when NM neurons still have more dendrites than in the adult owl. The neurons of NL have many short dendrites before hatching. Their number is greatly reduced by P6, and then does not change during later development. Like NM neurons, NL neurons and dendrites grow in the first month posthatch, and at P21, NL dendrites are longer than those in the adult owl. Thus, the auditory brainstem circuits grow in the first month after hatching, but are not yet mature at the time the head reaches its adult size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call