Abstract

Liquefaction usually occurs on a saturated sand deposit when the pore water pressure increases during the earthquake, and the water level will rise that could even burst out above the liquefied layer. If there is a relatively impermeable soil layer above the liquefied one, then the water could be trapped between the liquefied soil and other layers on the top. This research tries to develop a numerical model to simulate the phenomenon using the Smoothed Particle Hydrodynamics (SPH) method. SPH is a numerical method based on particle interactions that initially developed to solve the problems in astrophysics. Two sets of particles are assigned to behave like water and impermeable soil, where the thin layer of water is placed between two layers of soil. The model is built using the Fortran programming language developed in the previous research to simulate the impermeable layer’s behavior by controlling the stiffness coefficient and coefficient of damping. The soil and water layers are aligned at specific angles to simulate the field’s sloping surface condition. The simulation results are presented in graphical animation using Gnuplot and visually checked that the particle’s movement could represent the field’s actual movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.