Abstract

Measuring the neutrino mass is one of the most compelling issues in particle physics. The European Research Council has funded HOLMES, a new experiment for a direct measurement of neutrino mass that started in 2014. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of \(^{163}\)Ho in order to extract information on neutrino mass with a sensitivity as low as 0.4 eV. HOLMES, in its final configuration, will deploy a 1000 pixel array of low-temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a transition edge sensor thermometer. The read out for an array of 1000 cryogenic detectors is a crucial matter: for HOLMES, a special radio-frequency-based multiplexing system is being developed. In this contribution, we outline the performance and special features of the multiplexing system and readout methods chosen for HOLMES.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.