Abstract

Short-survival, sequential, and long-survival thymidine radiograms of rat embryos, fetuses, and young pups were analyzed in order to determine the time of origin, site of origin, migratory route, and settling pattern of neurons of the dorsal lateral geniculate (LGD), ventral lateral geniculate (LGV), and lateral posterior (LP) nuclei of the thalamus. Quantitative examination of long-survival radiograms established that the neurons of the LGD are produced on days E14 and E15. Within the LGD there is an external-to-internal neurogenetic gradient; the majority (77%) of neurons of the external half are generated on day E14, while in the internal half the majority (64%) of neurons originate on day E15. The late-generated LGD neurons are located in the termination field of the uncrossed fibers of the optic tract. Examination of short-survival radiograms indicated that the neurons of the LGD originate in a discrete neuroepithelial eversion situated ventral to the pineal rudiment and dorsal to the putative neuroepithelium of the ventral nuclear complex. In sequential radiograms from rats injected with 3H-thymidine on day E15 and killed on days E16 and E17, the migration of young LGD neurons was followed in a posterolateral direction to the formative lateral geniculate body. By day E17, the day when the optic tract fibers begin to disperse over the lateral surface of the posterior diencephalon, the distribution of early and late-generated neurons of the LGD resembles that seen in young pups. As a whole, the neurons of the LGV are produced earlier than the neurons of the LGD. The bulk of LGV neurons are generated on days E14 and E15 in a caudal-to-rostral intranuclear neurogenetic gradient. Caudal LGV neurons are generated mainly on day E14 (82%), while a substantial proportion of rostral neurons (32%) are generated on day E15. Examination of short-survival and sequential radiograms suggest that the LGV neurons originate in an inverted sublobule situated beneath the putative neuroepithelium of the LGD. At anterior levels the putative inverted sublobule of the LGV merges imperceptibly with the neuroepithelium that produces the neurons of the lateral habenular nucleus. Like the neurons of the LGD and LGV, so also those of the LP are generated on days E14 and E15, but the neurogenetic gradients are different. There is a lateral-to-medial gradient within the LP as a whole. Peak production of neurons is on day E14 laterally (58%) and on day E15 medially (59%).(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call